C-Nucleosides. Part 2.1 Preparation of 2-[(1R,2S,3R,4R)-2,3-Dihydroxy-4-(hydroxymethyl)cyclopentyl]thiazole-4-carboxamide ('Carbocyclic' Tiazofurin) and its Antipode

Allan P. Dishington, ${ }^{\text {a }}$ David C. Humber ${ }^{b}$ and Richard J. Stoodley ${ }^{*, a}$
${ }^{a}$ Department of Chemistry, UMIST, PO Box 88, Manchester M60 1QD, UK
${ }^{\text {b }}$ Medicinal Chemistry Department, Glaxo Group Research Ltd., Greenford, Middlesex UB6 OHE, UK

Abstract

Benzyl 6β-aminopenicillanate 1β-oxide 9 c underwent N-acylation with ($1 R^{*}, 2 S^{*}, 3 R^{*}, 4 R^{*}$)-2,3-dibenzoyloxy-4-(benzoyloxymethyl)cyclopentanecarbonyl chloride 11b-assembled in nine steps from trinorbornadiene-to give a mixture of the penicillins 10 d and 13 c , which were readily separated by chromatography. The less polar material, identified as the diastereoisomer 10d by its conversion into (1R,5R,6R,7S)-6,7-isopropylidenedioxy-3-oxabicyclo[3.2.1]octan-2-one 24, was transformed into the title compound 1b by a four-step sequence. In a similar manner, the penicillin 13c was converted into carbatiazofurin enantiomer ent-1b. Both carbatiazofurin 1b and its enantiomer displayed cytotoxicity against a breast carcinoma cell line.

C-Nucleosides-compounds in which a sugar is linked at position 1 to a heterocycle by way of a C-C bond-are of considerable interest because of the antibacterial, antitumour and antiviral properties of certain representatives. In the biologically active members, the sugar is D-ribofuranose and it is β-linked to a 5 - or 6 -membered heterocycle. Examples include tiazofurin 1a, ${ }^{2}$ pyrazofurin 2a, ${ }^{3}$ showdomycin 3a, ${ }^{3}$ formycin 4, ${ }^{3}$ formycin B $5{ }^{3}$ and oxazinomycin 6a. ${ }^{3}$

Relatively little attention has been directed at analogues of C nucleosides in which the furanose ring oxygen is replaced by a methylene group-carbocyclic C-nucleosides. Three such analogues of the bioactive C-nucleosides have been described: (\pm)-carbapyrazofurin 2b, ${ }^{4}$ (\pm)-carbashowdomycin $3 b^{4,5}$ and (\pm)-carbaoxazinomycin $6 \mathbf{b} .{ }^{6}$ However, there have been no reports that such compounds are biologically active.

To date, all syntheses of carbocyclic C-nucleosides have involved the assembly of the heterocycle on a carbafuranose derivative bearing a functionalised C-appendage at position $1 .^{4-9}$ In the case of the analogues of the bioactive C-nucleosides, the carbafuranose derivatives 7 and 8 have played a central role. For example, the (\pm)-carbafuranose 7a was used by Just and Kim in the synthesis of (\pm)-carbapyrazofurin 2 b and (\pm)carbashowdomycin 3b, ${ }^{4}$ the (\pm)-relative $\mathbf{7 b}$ in the elaboration of (\pm)-carbashowdomycin $3 \mathbf{b},{ }^{5}$ the relative $7 \mathbf{c}$ in the assembly of a potential precursor of carbashowdomycin $\mathbf{3 b},{ }^{9}$ and the (\pm)carbafuranose 8 in the construction of (\pm)-carbaoxazinomycin 6b. ${ }^{6}$

Our interest in C-nucleosides and their relatives stemmed from the recognition that useful heterocyclic moieties might be derived from 6β-aminopenicillanic acid 9 a by exploiting known rearrangements of its N-acyl derivatives (penicillins). Thus, using this tactic, we recently reported ${ }^{1}$ a synthesis of tiazofurin 1a-a synthetic C-nucleoside with significant antitumour properties and broad-spectrum antiviral properties. ${ }^{2}$ In the process, the penicillin 10a-assembled from the acid chloride 11a and the penicillanate 9 b -was converted into the thiazole 12a by the action of sodium hydroxide in dimethyl sulfoxide DMSO. Tiazofurin 1a was then derived from the thiazole 12a by an ozonolysis-methanolysis sequence.

In view of the interesting bioactivity of tiazofurin 1a (indeed, the compound has been subjected to clinical evaluation ${ }^{10}$), we wished to prepare carbatiazofurin 1b and to evaluate it biologically. Our plan was to extend the aforecited methodology by preparing the penicillin $\mathbf{1 0 b}$ and effecting its transformation into the thiazole 12b and thence the target 1b. We now report on the outcome of this work.

Results and Discussion

In principle, the penicillin 10b should be accessible from the penicillanate 9 b and either the acid chloride 11b or its racemate. Of course, the use of the racemic acylating agent would lead to the co-production of the penicillin 13a and it would be necessary to separate the desired diastereoisomer 10b from the mixture. However, since it would be of interest to convert the penicillin 13a into carbatiazofurin enantiomer ent-1b and to examine the biological profile of the last cited compound, we opted to undertake the synthesis of the (\pm)-acid 18.

The planned route to the (\pm)-acid 18 is outlined in Scheme 1. Thus, it was envisaged that oxidation of the known bicyclic alkene 14^{11} would provide the diacid 15 , which would be convertible into the anhydride 16. Reduction of the last cited material would give the (\pm)-hydroxy acid 17 which would serve as a precursor of the target.

The bicyclic alkene 14 was prepared in low overall yield ($\sim 18 \%$) from trinorbornadiene by the two-step procedure of Shealy and Clayton. ${ }^{11}$ Dihydroxylation of trinorbornadiene $\left(\mathrm{KMnO}_{4}-\mathrm{NaOH}-\mathrm{Na}_{2} \mathrm{SO}_{3}\right.$, aq. acetone, $\left.-65^{\circ} \mathrm{C}\right)$ provided, after chromatography, the diol $19 a$ in 29% yield (lit., ${ }^{11} 28 \%$). Benzoylation, effected in chloroform with benzoyl chloride in the presence of pyridine and 4 -(dimethylamino)pyridine (DMAP), gave the dibenzoate 14 in 62% yield after chromatography and crystallisation. Oxidative cleavage of the bicyclic alkene 14 with potassium permanganate at $\sim 7^{\circ} \mathrm{C}$ in a two-phase system involving ethyl acetate, 2,2,4-trimethylpentane and water under an atmosphere of carbon dioxide (conditions prescribed ${ }^{11}$ for effecting the conversion of the bicyclic alkene 19b into the diacid 20a) provided the diacid 15 in 80% yield after crystallisation. It was necessary to perform the crystallisation step immediately after the preparation because of the instability of the crude diacid 15 in the non-crystalline state.

Attempts to convert the diacid 15 into the anhydride 16 using acetic anhydride were unsatisfactory. However, the use of ethyl ethynyl ether ${ }^{11}$ in chloroform provided the required material in 90% yield as a moisture-sensitive solid. In accord with the presence of the anhydride moiety, compound 16 displayed strong IR absorptions at 1821 and $1769 \mathrm{~cm}^{-1}$.

Treatment of the anhydride $\mathbf{1 6}$ with sodium borohydride in N, N-dimethylformamide (DMF) furnished the (\pm)-hydroxy acid 17 as a slightly impure foam in $\sim 89 \%$ yield. Without purification, the (\pm)-hydroxy acid 17 was subjected to the action of benzoyl chloride in pyridine; work-up, however, gave only a neutral product in modest yield ($\sim 37 \%$ after chromatography) which was identified as the (\pm)-lactone 21.

1a; $X=0$
b; $\mathrm{X}=\mathrm{CH}_{2}$

6a; $X=0$ b; $X=\mathrm{CH}_{2}$

7a; $\mathrm{R}=\mathrm{Bu}^{\mathrm{t}} \mathrm{Me}_{2} \mathrm{Si}$
b; R = tetrahydropyran-2-yl
c; $\mathrm{R}=\mathrm{Bu}^{t} \mathrm{CO}$

9a; $R=H, n=0$
b; $R=\mathrm{CH}_{2} \mathrm{Ph}, n=0$
c; $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}, n=1$

The last cited compound was also obtained [$\sim 63 \%$ yield after purification by preparative TLC (PLC) and crystallisation] when the crude (\pm)-hydroxy acid 17 was subjected to the action of ethyl ethynyl ether in chloroform.

It was envisaged that the (\pm)-hydroxy acid 17 would be convertible into the target (\pm)-acid 18 by way of the (\pm)intermediates 22a and 22b. Treatment of the product obtained by sodium borohydride reduction of the anhydride 16 with methanolic hydrogen chloride gave three materials, which were separated by chromatography. The first eluted material, isolated in 5% yield, was identified as the diester 20b; the same product was obtained (85% yield) by treatment of the anhydride 16 with methanolic hydrogen chloride. The second fraction, obtained in 58% yield, was the desired (\pm)-hydroxy ester 22a. The third eluted material, obtained in 2% yield, was the diol 23 ; the last cited product also arose (21% yield) when the anhydride 16 was subjected to the action of sodium borohydride in tetrahydrofuran (THF). In the presence of benzoyl chloride and pyridine, the (\pm)-alcohol 22a was transformed into the (\pm) -

$13 \mathrm{a} ; \mathrm{R}=\mathrm{PhCO}, n=0$
b; $\mathrm{R}=\mathrm{Bu}^{t} \mathrm{Me}_{2} \mathrm{Si}, n=0$
c; $R=P h C O, n=1$

Scheme 1
benzoate 22b (84% yield after chromatography). Attempts to convert the (\pm)-ester 22 b into the (\pm)-acid 18 by the use of ethanethiol-aluminium bromide ${ }^{12}$ or lithium iodide-pyridine ${ }^{13}$ were unproductive (an impure material, which lacked a methyl ester absorption in its ${ }^{1} \mathrm{H}$ NMR spectrum, was isolated from the latter reaction in low yield but it could not be purified).

The report that it is possible to convert a tert-butyldimethylsilyl ester function into an acid chloride moiety in the presence of a tert-butyldimethylsilyl ether group ${ }^{14}$ prompted us to prepare the (\pm)-disilyl compound 22c. The synthesis was best achieved by treatment of the crude (\pm)-hydroxy acid 17 with tertbutyldimethylsilyl triflate and triethylamine in dichloromethane at $-20^{\circ} \mathrm{C}$; following chromatography, the (\pm)-product 22c was obtained in $\sim 85 \%$ yield. Disappointingly, under the

$$
\begin{aligned}
& 2 \mathrm{a} ; R^{1}=\mathrm{Me}, R^{2}=H \\
& \mathrm{~b} ; R^{1}=\mathrm{Me}, R^{2}=\mathrm{PhCO} \\
& \text { c; } R^{1}=R^{2}=\mathrm{Bu}^{t} \mathrm{Me}_{2} \mathrm{Si} \\
& \mathrm{~d} ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Bu}^{t} \mathrm{Me}_{2} \mathrm{Si} \\
& e ; R^{1}=\mathrm{PhCH}_{2}, R^{2}=\mathrm{H} \\
& \text { f; } R^{1}=\mathrm{PhCH}_{2}, R^{2}=\mathrm{PhCO}
\end{aligned}
$$

literature conditions $\left[(\mathrm{COCl})_{2}, \mathrm{DMF}\right.$ (cat.), $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right]$, there was no evidence for the production of the desired (\pm)-acid chloride 11c (loss of both silyl groups occurred). It was possible selectively to deprotect the silyl ester function of the (\pm)-disilyl compound 22c by the use of either potassium carbonate in methanol-THF-water or tetrabutylammonium fluoride (TBAF) in THF; the former procedure gave the better yield (84%) of the (\pm)-acid 22d. However, attempts to transform the last cited compound into the (\pm)-acid chloride 11c were again thwarted by desilylation. Efforts were also made to derive the penicillins 10c and 13b by subjecting the (土)-acid 22d and the aminopenicillanate $9 b^{1}$ to a variety of coupling conditions; again, these were unproductive.

The possibility of preparing the (\pm)-acid 18 by way of the (\pm)-intermediates 22 e and 22 f was next examined. Treatment of the product obtained by reduction of the anhydride 16 with sodium borohydride in DMF with acidic benzyl alcohol provided two materials, which were separated by chromatography. The first eluted material, isolated in 4% yield, was the dibenzyl ester 20 c . The second fraction, obtained in 68% yield, was the desired (\pm)-hydroxy ester 22 e. It underwent benzoylation to give (90% yield after chromatography) the (\pm)benzoate 22f, which then underwent hydrogenolysis $\left(\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}\right.$, EtOAc) to furnish the (\pm)-acid 18 in 89% yield.

It was gratifying to find that the (\pm)-acid 18 could be transformed into the (\pm)-acid chloride 11 b , which reacted with the aminopenicillanate $9 b^{1}$ (DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give a $1: 1$ mixture of the penicillins 10 b and 13a. Unfortunately, the mixture, which was isolated in 63% yield after chromatography, could not be fractionated!

In the hope that they would be amenable to separation, the penicillin sulfoxides 10 d and 13 c were selected for preparation. Treatment of the aminopenicillanate 9 b (as its $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{3} \mathrm{H}$ salt) with m-chloroperbenzoic acid (MCPBA) in dichloro-methane-DMF provided, after chromatography and crystallisation, the sulfoxide 9 c in 92% yield. The sulfoxide 9 c reacted with the (\pm)-acid chloride 11 b to give, after chromatographic fractionation, the penicillin 10 d in 42% yield and the penicillin 13 c in 40% yield (the basis of the stereochemical assignment will be discussed later). It is worth noting that the penicillins 10 d and 13c showed a marked difference in their chromatographic mobilities (the former being more mobile).

Under reductive conditions $\left(\mathrm{PBr}_{3}, \mathrm{DMF},-7{ }^{\circ} \mathrm{C}\right),{ }^{15}$ the sulfoxide 10 d was transformed into the sulfide $\mathbf{1 0 b}(76 \%$ yield
after chromatography) and the sulfoxide 13 c into the sulfide 13 a (80% yield after chromatography).

Having accomplished the synthesis of the penicillins $\mathbf{1 0 b}$ and 13a, attention was turned to effecting their conversion into carbatiazofurin 1b and its enantiomer. Using the optimum conditions devised for effecting the $10 \mathrm{a} \rightarrow$ 12a transformation (NaOH in aq. DMSO; reflux in xylene), ${ }^{1}$ the penicillin 10 b was transformed into the thiazole $\mathbf{1 2 b}$ which was isolated, after chromatography, as a slightly impure foam in $\sim 50 \%$ yield; PLC provided compound $\mathbf{1 2 b},[\alpha]_{D}-116\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, in a pure state. Similarly, the penicillin 13a was transformed into the pure thiazole enantiomer ent-12b, $[\alpha]_{\mathrm{D}}+102\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The 300 $\mathbf{M H z}{ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{1 2 b}$ and ent $-\mathbf{1 2 b}$ were indistinguishable, in accord with their enantiomeric relationship.

Sequential treatment of compound $\mathbf{1 2 b}$ with ozone in dichloromethane at $-78^{\circ} \mathrm{C}$ and methanolic ammonia provided, after chromatography, carbatiazofurin 1b, $[\alpha]_{D}-52$ (MeOH), in 49% yield. Similarly, carbatiazofurin enantiomer ent $-1 \mathrm{~b},[\alpha]_{\mathrm{D}}+51(\mathrm{MeOH})$, was prepared $(53 \%$ after chromatography). Again, the spectroscopic properties of compound $\mathbf{1 b}$ and its enantiomer were indistinguishable.

Tiazofurin 1a is reported to show a small negative optical rotation $\left\{[\alpha]_{\mathrm{D}}-9(\mathrm{EtOH})\right\}^{1.2}$ Very tentatively therefore, the laevorotatory carbatiazofurin was considered to possess the stereostructure $\mathbf{1 b}$.

In the hope of shedding some light on the stereochemical issue, the CD spectra of the carbatiazofurins and tiazofurin 1a were determined. However, a comparison of the spectra of the former compounds, shown in Fig. 1, and tiazofurin 1a, illustrated in Fig. 2, failed to resolve the problem.

The possibility of establishing the stereostructures of compounds 10 d and 13 c by chemical means was next considered. It was envisaged that, when subjected to a hydrolysis-isopropylidenation sequence, the former penicillin would afford the bicyclic lactone 24 and the latter penicillin the bicyclic lactone enantiomer ent-24. The bicyclic lactone 24 (originally obtained in racemic form by Just et al. ${ }^{7}$) has been prepared by the groups of Ohno, ${ }^{16}$ who reports $[\alpha]_{\mathrm{D}}+44.4\left(\mathrm{CHCl}_{3}\right)$, and Koizumi, ${ }^{17}$ who claims $[\alpha]_{\mathrm{D}}+46.7\left(\mathrm{CHCl}_{3}\right)$.

In a preliminary study, the (\pm)-ester 22 b was heated with hydrochloric acid and the product was stirred with acidic acetone. Following chromatography and crystallisation, the (\pm)-bicyclic lactone 24 was isolated in 14% yield. When subjected to a corresponding reaction and purification sequence, the penicillin 10 d afforded the bicyclic lactone $24,[\alpha]_{\mathrm{D}}$ $+22\left(\mathrm{CHCl}_{3}\right)$, in 7% yield. Similarly, the penicillin 13 c gave the bicyclic lactone enantiomer ent-24, $[\alpha]_{\mathrm{D}}-21\left(\mathrm{CHCl}_{3}\right)$, in 29% yield. Although the optical rotations were notably lower than the literature values,* there can be little doubt concerning the stereochemical assignment of the penicillins 10 d and $\mathbf{1 3 c}$ and their subsequent transformation products.

Compounds 1a, 1b and ent-1b were tested against a breast carcinoma cell line. Tiazofurin 1a was cytotoxic at a concentration of $0.1 \mathrm{mmol} \mathrm{dm}^{-3}$ whereas carbatiazofurin $\mathbf{1 b}$ and carbatiazofurin enantiomer ent-1b were toxic at a concentration of $1 \mathrm{mmol} \mathrm{dm}{ }^{-3}$.

Experimental

Dry solvents, referred to in the ensuing experiments, were prepared in the following manner: chloroform and dichloromethane were distilled from calcium hydride; THF was distilled from

[^0]

Fig. 1 Fourier-transform-filtered CD spectra (EtOH) of (-)-carbatiazofurin $\mathbf{1 b}$ (bottom) and its enantiomer (top), normalised with respect to the prominent shoulder at 230 nm in the UV spectra

Fig. 2 CD spectrum (EtOH) of (-)-tiazofurin 1a, normalised with respect to the prominent shoulder at 232 nm in the UV spectrum
sodium-benzophenone; DMF was stored over $4 \AA$ molecular sieves; pyridine was distilled from barium oxide and stored over sodium hydroxide pellets. Light petroleum refers to that fraction boiling in the range $30-60^{\circ} \mathrm{C}$.
PLC was carried out using Whatman silica gel 60A PK6F plates. Optical rotations, given in 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$, were measured at $\sim 20^{\circ} \mathrm{C}$ using either a Thorn Automation Type 243 or an Optical Activity 1000 polarimeter. A JASCO J600 spectropolarimeter was employed to measure CD spectra. IR Spectra were recorded in solution (with solvent subtraction) using a Nicolet 5SXC FT IR spectrometer. For other chromatographic and instrumental details, see Part $1 .{ }^{1}$ UV Extinction coefficients (ε) are presented in $\mathrm{cm}^{2} \mathrm{mmol}^{-1}$; coupling constants (J) and separations are shown in Hz .

Preparation of (2-exo,3-exo)-Bicyclo[2.2.1]hept-5-ene-2,3-diol 19a. ${ }^{11}$-Finely powdered potassium permanganate ($15.8 \mathrm{~g}, 0.1$ mol) was added over a period of 10 min to a vigorously stirred, cooled ($\mathrm{Me}_{2} \mathrm{CO}$-solid CO_{2}) solution of trinorbornadiene (25 $\mathrm{cm}^{3}, 21.4 \mathrm{~g}, 0.232 \mathrm{~mol}$) in acetone ($220 \mathrm{~cm}^{3}$), while the temperature of the mixture was maintained at $-67^{\circ} \mathrm{C}\left(\pm 3^{\circ} \mathrm{C}\right)$ for 1 h . An ice-cold solution of sodium hydroxide $(4.0 \mathrm{~g}, 0.1 \mathrm{~mol})$ and sodium sulfite ($13.0 \mathrm{~g}, 0.103 \mathrm{~mol}$) in water ($70 \mathrm{~cm}^{3}$) was
added in portions over a period of 5 min , the temperature of the mixture being maintained at $-65^{\circ} \mathrm{C}\left(\pm 5^{\circ} \mathrm{C}\right)$. After 10 min , the mixture was allowed to warm to room temperature. The solid material was allowed to settle and the supernatant liquid was decanted. The solid was washed with 90% aq. acetone (3×100 cm^{3}) and the combined decants were concentrated. The residue was extracted with chloroform ($4 \times 50 \mathrm{~cm}^{3}$) and the extracts were concentrated. Subjection of the residue to silica gel column chromatography [light petroleum- $\mathrm{EtOAc}(2: 1)$ as eluent] gave the title diol $19 \mathrm{a}\left(8.41 \mathrm{~g}, 29 \%\right.$), m.p. $119-120^{\circ} \mathrm{C}$ (lit., ${ }^{11} 118^{\circ} \mathrm{C}$); $v_{\text {max }}\left(\mathrm{CHBr}_{3}\right) / \mathrm{cm}^{-1} 3602$ and $3482(\mathrm{OH}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 204(\varepsilon$ 2900); $\delta\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.64$ and 1.89 [each 1 H , $\mathrm{dt}(J 9,1$ and 1) and d ($J 9$), $7-\mathrm{H}_{2}$], $2.71(2 \mathrm{H}, \mathrm{t}, J 1,1$ and $4-\mathrm{H}), 3.02(2 \mathrm{H}$, br s, $2 \times \mathrm{OH}$), $3.71(2 \mathrm{H}, \mathrm{s}, 2$ - and $3-\mathrm{H})$ and $6.04(2 \mathrm{H}, \mathrm{s}, 5$ - and $6-$ H) (Found: C, 66.8; H, 7.9. Calc. for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{2}$: C, $66.65 ; \mathrm{H}$, 8.00%).

Preparation of (5-exo,6-exo)-5,6-Dibenzoyloxybicyclo[2.2.1]-hept-2-ene $14 .{ }^{11}$-(a) A solution of benzoyl chloride $\left(6.51 \mathrm{~cm}^{3}\right.$, $7.88 \mathrm{~g}, 56.1 \mathrm{mmol}$) in dry chloroform ($15 \mathrm{~cm}^{3}$) was added under nitrogen to a stirred solution of the diol $19 \mathrm{a}(3.22 \mathrm{~g}$, 25.5 mmol) in dry chloroform ($50 \mathrm{~cm}^{3}$) containing pyridine $\left(4.54 \mathrm{~cm}^{3}, 4.44 \mathrm{~g}, 56.1 \mathrm{mmol}\right)$ and DMAP $(0.62 \mathrm{~g}, 5.1 \mathrm{mmol})$. After 18 h , the solution was diluted with chloroform $\left(60 \mathrm{~cm}^{3}\right)$ and washed successively with 10% hydrochloric acid $(2 \times 30$ cm^{3}), saturated aq. sodium hydrogen carbonate ($2 \times 30 \mathrm{~cm}^{3}$) and water ($2 \times 30 \mathrm{~cm}^{3}$). Evaporation of the dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase gave a pale-yellow oil, which was subjected to silica gel chromatography [light petroleum-EtOAc (2:1) as eluent]. Crystallisation of the purified product from chloroform-light petroleum gave the title dibenzoate $14(5.29 \mathrm{~g}$, 62%), m.p. $126-128{ }^{\circ} \mathrm{C}$ (lit., ${ }^{11} 118-118.5^{\circ} \mathrm{C}$); $v_{\max }\left(\mathrm{CHBr}_{3}\right) / \mathrm{cm}^{-1}$ 1718 (ester $\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 228(\varepsilon 24300), 273(1800)$ and 282 (1400); $\delta\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.89$ and 2.30 [each 1 H , br d (separation 9) and d (J 9), $7-\mathrm{H}_{2}$], 3.07 ($2 \mathrm{H}, \mathrm{br}$ s, 1- and $4-\mathrm{H}$), $5.10(2 \mathrm{H}, \mathrm{s}, 5-$ and $6-\mathrm{H}), 6.28(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{and} 3-\mathrm{H})$ and $7.21-7.31$, 7.42-7.51 and 7.84-7.92 (4, 2 and 4 H , each $\mathrm{m}, 2 \times \mathrm{Ph}$); m / z (FAB) $335\left(\mathrm{MH}^{+}, 10 \%\right), 213(42)$ and $105\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}, 100\right)$ (Found: C, 75.5; H, 5.5. Calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{4}$: C, $75.45 ; \mathrm{H}, 5.45 \%$).
(b) Trinorbornadiene ($125 \mathrm{~cm}^{3}, 107 \mathrm{~g}, 1.16 \mathrm{~mol}$) was converted, as before, into the diol 19a which, without purification, was treated with benzoyl chloride. Crystallisation of the product afforded the dibenzoate $14(33.8 \mathrm{~g}, 9 \%)$.

Preparation of $\mathrm{t}-4, \mathrm{t}-5$-Dibenzoyloxycyclopentane-r-1,c-3-dicarboxylic Acid 15.-A solution of the alkene $14(26.4 \mathrm{~g}, 78.9$ mmol) in 2,2,4-trimethylpentane ($70 \mathrm{~cm}^{3}$) and ethyl acetate (400 cm^{3}) was layered on top of water $\left(880 \mathrm{~cm}^{3}\right)$. The stirred mixture was cooled in ice and treated during 2 h with a solution of potassium permanganate ($48.3 \mathrm{~g}, 30.6 \mathrm{mmol}$) in water (766 cm^{3}). During the addition, a steady stream of carbon dioxide was passed through the mixture which was maintained at 5$10^{\circ} \mathrm{C}$ using an ice-bath. As soon as the addition was complete, sulfur dioxide was passed through the mixture (maintained below $15^{\circ} \mathrm{C}$) until a colourless solution resulted. The mixture was concentrated (to $\sim 300 \mathrm{~cm}^{3}$), cooled in ice, acidified with conc. hydrochloric acid ($28 \mathrm{~cm}^{3}$) and extracted with diethyl ether ($7 \times 300 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to leave a residue, which was crystallised from ethyl acetate-light petroleum to give the title diacid $15(25.3 \mathrm{~g}, 80 \%)$, m.p. $179-180^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1726$ (ester $\mathrm{C}=\mathrm{O}$) and 1718 (acid $\mathrm{C}=\mathrm{O}$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 228$ (ε $24500), 273$ (1900) and $282(1500)$; $\delta\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3}-\right.$ $\mathrm{D}_{2} \mathrm{O}$) 1.99-2.17 and 2.60-2.76 (each $1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}$), 3.25-3.40 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 3-\mathrm{H}$), 5.66 (2 H , br d, separation 4, 4- and $5-\mathrm{H}$) and 7.41-7.52, 7.60-7.70 and 7.82-7.92 (4, 2 and 4 H , each m, $2 \times \mathrm{Ph}) ; m / z(\mathrm{FAB}) 399\left(\mathrm{MH}^{+}, 9 \%\right)$ and $105\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}, 100\right)$ (Found: C, 63.3; H, 4.7. $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{8}$ requires C, 63.30; $\mathrm{H}, 4.55 \%$).

Preparation of t-4,t-5-Dibenzoyloxycyclopentane-r-1,c-3-dicarboxylic Acid Anhydride 16.-50\% Ethyl ethynyl ether in hexanes $\left(6.96 \mathrm{~cm}^{3}, 5.00 \mathrm{~g}, 36 \mathrm{mmol}\right)$ was added to a stirred suspension of the diacid $15(7.20 \mathrm{~g}, 18.0 \mathrm{mmol})$ in dry chloroform ($70 \mathrm{~cm}^{3}$) under nitrogen. Evaporation after 18 h gave a brown solid, which was suspended in cold ($\mathrm{Me}_{2} \mathrm{CO}$-solid CO_{2}), dry THF. The mixture was filtered under nitrogen and the solid was washed with cold, dry THF. The dried product $(6.21 \mathrm{~g}, 90 \%)$, which because of its sensitivity to moisture was stored in vacuo (over $\mathrm{P}_{2} \mathrm{O}_{5}$), was identified as the title anhydride 16, m.p. $78-79^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) / \mathrm{cm}^{-1} 1821$ and 1769 (anhydride $\mathrm{C}=\mathrm{O}$) and 1729 (ester $\mathrm{C}=\mathrm{O}$); $\lambda_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm} 275$ ($\varepsilon 2300$) and $284(1800) ; \delta\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.45$ and 2.69 [each $1 \mathrm{H}, \mathrm{d}(J 14)$ and dt ($J 14,4$ and 4), 2-H2], 3.61 ($2 \mathrm{H}, \mathrm{d}, J 4$, 1- and $3-\mathrm{H}), 5.82(2 \mathrm{H}, \mathrm{s}, 4-$ and $5-\mathrm{H})$ and $7.24-7.36,7.48-7.58$ and $7.80-$ $7.89(4,2$ and 4 H , each $\mathrm{m}, 2 \times \mathrm{Ph}) ; m / z(\mathrm{FAB}) 381\left(\mathrm{MH}^{+}, 3 \%\right)$, $259\left(\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{5}{ }^{+}, 11\right)$ and $105\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}, 100\right)$ (Found: C, 66.3; $\mathrm{H}, 4.3 . \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{7}$ requires $\mathrm{C}, 66.30 ; \mathrm{H}, 4.25 \%$).

Preparation of (1R*,2S*,3R*,4R*)-2,3-Dibenzoyloxy-4-(hydroxymethyl)cyclopentane-1-carboxylic Acid 17.-Finely powdered sodium borohydride $(1.25 \mathrm{~g}, 33.0 \mathrm{mmol})$ was dissolved in dry DMF ($100 \mathrm{~cm}^{3}$) and to the ice-cooled solution was added a solution of the anhydride $16(5.00 \mathrm{~g}, 13.1 \mathrm{mmol})$ in dry DMF ($100 \mathrm{~cm}^{3}$) under nitrogen. After 1 h , the mixture was concentrated and the residue was partitioned between 10% hydrochloric acid $\left(100 \mathrm{~cm}^{3}\right)$ and ethyl acetate $\left(100 \mathrm{~cm}^{3}\right)$. The organic phase was extracted with aqueous sodium hydrogen carbonate ($3 \times 100 \mathrm{~cm}^{3}$). The combined aqueous extracts were acidified with 10% hydrochloric acid and extracted with ethyl acetate $\left(4 \times 100 \mathrm{~cm}^{3}\right)$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to leave mainly the title compound $17\left(4.51 \mathrm{~g}, \sim 89 \%\right.$) as a foam; $v_{\max }\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) / \mathrm{cm}^{-1}$ 3400 br (OH) and 1722 (ester $\mathrm{C}=\mathrm{O}) ; \delta\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right)$ inter alia 1.88-2.04 and 2.33-2.51 (each $1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}$), 2.52-2.67 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.24-3.38(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.78(2 \mathrm{H}, \mathrm{d}$, separation 4, $\left.\mathrm{CH} \mathrm{H}_{2} \mathrm{OH}\right), 5.49(1 \mathrm{H}, \mathrm{t}, J 6,3-\mathrm{H}), 5.75(1 \mathrm{H}, \mathrm{t}, J 6,2-\mathrm{H})$ and $7.30-$ $7.45,7.48-7.60$ and $7.88-8.05(4,2$ and 4 H , each $\mathrm{m}, 2 \times \mathrm{Ph}) ; \mathrm{m} / \mathrm{z}$ $\left(\mathrm{CI} ; \mathrm{CH}_{4}\right) 384\left(\mathrm{MH}^{+}, 41 \%\right), 123(100)$ and $105\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}, 94\right)$.

Preparation of (1R*,5R*,6R*,7S*)-6,7-Dibenzoyloxy-3-oxabicyclo[3.2.1]octan-2-one 21.-(a) Benzoyl chloride (0.035 $\mathrm{cm}^{3}, 0.042 \mathrm{~g}, 0.30 \mathrm{mmol}$) was added to a stirred, ice-cooled solution of the crude hydroxy acid $17(0.020 \mathrm{~g}, \sim 0.052 \mathrm{mmol})$ in dry pyridine ($1 \mathrm{~cm}^{3}$). After 20 h , the mixture was concentrated and the residue partitioned between ethyl acetate and 10% hydrochloric acid. The organic phase was washed successively with aq. sodium hydrogen carbonate and water, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Subjection of the resultant red oil to silica gel column chromatography [hexanes-EtOAc (1:1) as eluent] and crystallisation of the purified product from chloroform-hexanes gave the title compound $21(0.007 \mathrm{~g}, \sim 37 \%)$. The $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of the material matched that of the sample obtained in the following experiment.
(b) 50% Ethyl ethynyl ether in hexanes $\left(0.018 \mathrm{~cm}^{3}, 0.013 \mathrm{~g}\right.$, 0.18 mmol) was added to a stirred, ice-cooled solution of the crude hydroxy acid $17(0.070 \mathrm{~g}, \sim 0.182 \mathrm{mmol})$ in dry chloroform ($1 \mathrm{~cm}^{3}$) under argon. After 18 h , the mixture was concentrated and the residue was subjected to PLC [hexanesEtOAc (1:1) as eluent]. Crystallisation of the purified product from chloroform-hexanes gave the title lactone 21 (0.042 g , $\sim 63 \%$) as a pale-yellow solid, m.p. $118-119{ }^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1730(\delta$-lactone $\mathrm{C}=\mathrm{O})$ and $1710($ ester $\mathrm{C}=\mathrm{O}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}$ $230(\varepsilon 22600) ; \delta\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.14$ and $2.55-2.65$ [each 1 H , br d ($J 12$) and $\left.\mathrm{m}, 8-\mathrm{H}_{2}\right], 2.72-2.77(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.33(1 \mathrm{H}$, dd, $J 4$ and $2.5,1-\mathrm{H}), 4.46$ and 4.51 [each 1 H , dd $(J 11.5$ and 3.5$)$ and dt $(J 11.5,1.5$ and 1.5$\left.), 4-\mathrm{H}_{2}\right], 5.61(1 \mathrm{H}, \mathrm{dd}, J 6$ and $0.5,6-$ H), $5.72(1 \mathrm{H}, \mathrm{dd}, J 6$ and $0.5,7-\mathrm{H})$ and $7.18-7.25,7.33-7.40$,
7.43-7.50, 7.53-7.59, 7.74-7.80 and 7.91-7.97(2,2,1,1, 2 and 2 H , each $\mathrm{m}, 2 \times \mathrm{Ph}$); m / z (FAB) $367\left(\mathrm{MH}^{+}, 5 \%\right)$ and 105 $\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}, 100\right)$ (Found: $\mathrm{C}, 69.0 ; \mathrm{H}, 5.3 . \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{6}$ requires C , 68.85 ; H, 4.95\%).

Reaction of the Anhydride 16 with Sodium Borohydride in DMF followed by Methanolic Hydrogen Chloride.-A solution of sodium borohydride $(0.420 \mathrm{~g}, 11.1 \mathrm{mmol})$ in dry DMF (60 cm^{3}) was added to a stirred, ice-cooled solution of the anhydride $16(3.00 \mathrm{~g}, 7.89 \mathrm{mmol})$ in dry DMF ($60 \mathrm{~cm}^{3}$). After 2.5 h , the solvent was evaporated off and the residue was dissolved in methanol ($20 \mathrm{~cm}^{3}$). The ice-cooled solution was stirred for 30 min with a saturated solution of hydrogen chloride in methanol ($30 \mathrm{~cm}^{3}$). Evaporation of the solvent left an oil, which was dissolved in ethyl acetate ($60 \mathrm{~cm}^{3}$). The solution was washed successively with 10% hydrochloric acid $\left(2 \times 40 \mathrm{~cm}^{3}\right)$, saturated aq. sodium hydrogen carbonate $\left(2 \times 40 \mathrm{~cm}^{3}\right)$ and water ($30 \mathrm{~cm}^{3}$). Evaporation of the dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase and subjection of the resultant oil to silica gel column chromatography [light petroleum-EtOAc (3:1) as eluent] gave three fractions.

The first eluted material ($0.167 \mathrm{~g}, 5 \%$) was identified as the dimethyl ester $\mathbf{2 0 b}$ on the basis of its $250 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum.

The second eluted material ($1.83 \mathrm{~g}, 58 \%$) was identified as methyl ($1 R^{*}, 2 S^{*}, 3 R^{*}, 4 R^{*}$)-2,3-dibenzoyloxy-4-(hydroxy-methyl)cyclopentane-1-carboxylate 22a on the basis of its NMR spectrum; $\delta\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.79-1.96$ and 2.32-2.48 (each 1 $\left.\mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 2.49-2.65(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and OH$), 3.23-3.37(1 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}), 3.75\left(5 \mathrm{H}\right.$, br s, $\mathrm{MeO}_{2} \mathrm{C}$ and $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 5.50(1 \mathrm{H}, \mathrm{t}, J 6,3-$ H), $5.73(1 \mathrm{H}, \mathrm{t}, J 6,2-\mathrm{H})$ and $7.30-7.47,7.48-7.60$ and $7.89-8.07$ (4, 2 and 4 H , each $\mathrm{m}, 2 \times \mathrm{Ph}$).

The third eluted material ($0.058 \mathrm{~g}, 2 \%$) was mainly the diol 23 on the basis of $250 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectroscopy.

Preparation of Dimethyl t-4,t-5-Dibenzoyloxycyclopentane-r-1,c-3-dicarboxylate 20b.-A saturated solution of hydrogen chloride in methanol $\left(4 \mathrm{~cm}^{3}\right)$ was added to a stirred, ice-cooled solution of the anhydride $16(0.100 \mathrm{~g}, 0.263 \mathrm{mmol})$ in dry chloroform ($1 \mathrm{~cm}^{3}$). After 1.5 h , the mixture was concentrated and the residue was partitioned between ethyl acetate and aq. sodium hydrogen carbonate. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to leave the title dimethyl ester 20b $(0.094 \mathrm{~g}, 85 \%)$ as a crystalline solid, m.p. $90-91^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{CHBr}_{3}\right) / \mathrm{cm}^{-1} 1731$ (ester $\mathrm{C}=\mathrm{O}$); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 229(\varepsilon$ $25000), 274(1900)$ and $282(1500) ; \delta\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.24$ 2.39 and $2.54-2.69$ (each $\left.1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 3.22-3.37(2 \mathrm{H}, \mathrm{m}, 1-$ and $3-\mathrm{H}), 3.76\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{MeO}_{2} \mathrm{C}\right), 5.79-5.87(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H})$ and 7.31-7.42, 7.49-7.58 and 7.89-7.97 (4, 2 and 4 H , each m , $2 \times \mathrm{Ph}) ; m / z(\mathrm{FAB}) 427\left(\mathrm{MH}^{+}, 6 \%\right)$ and $105\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}, 100\right)$ (Found: C, 64.6; H, 5.3. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{8}$ requires $\mathrm{C}, 64.8 ; \mathrm{H}, 5.20 \%$).

Reaction of the Anhydride 16 with Sodium Borohydride in $T H F$.-A solution of sodium borohydride $(0.008 \mathrm{~g}, 0.21 \mathrm{mmol})$ in dry THF ($1 \mathrm{~cm}^{3}$) was added to a stirred solution of the anhydride $16(0.050 \mathrm{~g}, 0.13 \mathrm{mmol})$ in dry THF $\left(1 \mathrm{~cm}^{3}\right)$ under nitrogen. After $1.5 \mathrm{~h}, 10 \%$ hydrochloric acid ($1 \mathrm{~cm}^{3}$) was added to the mixture which, after another 0.5 h , was diluted with ethyl acetate and water. Evaporation of the dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase gave t-4,t-5-dibenzoyloxyr-1,c-3-di(hydroxymethyl)cyclopentane $23(0.011 \mathrm{~g}, 21 \%)$ as a syrup, $v_{\max }\left(\mathrm{CHBr}_{3}\right) / \mathrm{cm}^{-1} 3495$ (OH) and 1711 (ester $\mathrm{C}=\mathrm{O}) ; \delta\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.42-1.60$ and 2.04-2.21 (each $\left.1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 2.21-2.47(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OH})$, 2.47-2.64 ($2 \mathrm{H}, \mathrm{m}, 1$ - and 3-H), 3.65-3.84 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{OH}$), $5.34-5.44(2 \mathrm{H}, \mathrm{m}, 4-$ and $5-\mathrm{H})$ and $7.28-7.45,7.49-7.60$ and 7.93-8.05 (4, 2 and 4 H , each $\mathrm{m}, 2 \times \mathrm{Ph}) ; m / z\left(\mathrm{CI} ; \mathrm{NH}_{3}\right) 388$ $\left(\mathrm{MNH}_{4}{ }^{+}, 30 \%\right), 371\left(\mathrm{MH}^{+}, 100\right), 353\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 60\right)$ and $249\left(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}{ }^{+}, 100\right)$.

Preparation of Methyl (1R*,2S*,3R*,4R*)-2,3-Dibenzoyloxy-4-(benzoyloxymethyl)cyclopentane-1-carboxylate 22b.-Benzoyl chloride $\left(0.35 \mathrm{~cm}^{3}, 0.427 \mathrm{~g}, 3.04 \mathrm{mmol}\right)$ was added to a stirred, ice-cooled solution of the alcohol 22a ($0.607 \mathrm{~g}, 1.46$ $\mathrm{mmol})$ in dry chloroform ($6 \mathrm{~cm}^{3}$) containing dry pyridine (0.86 $\mathrm{cm}^{3}, 0.844 \mathrm{~g}, 10.67 \mathrm{mmol}$). The mixture was allowed to warm to room temperature and, after 5 h , was concentrated. The residue was partitioned between chloroform and 10% hydrochloric acid and the organic phase was washed with saturated aq. sodium hydrogen carbonate followed by water. Evaporation of the dried $\left(\mathrm{MgSO}_{4}\right)$ organic layer and subjection of the oily residue to silica gel column chromatography [light petroleum-EtOAc (5:1) as eluent] gave the title compound $22 \mathrm{~b}(0.616 \mathrm{~g}, 84 \%)$ as an oil, $v_{\text {max }}\left(\mathrm{CHBr}_{3}\right) / \mathrm{cm}^{-1} 1724$ (ester $\left.\mathrm{C}=\mathrm{O}\right) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 229(\varepsilon$ $35400), 274(2700)$ and $282(2200) ; \delta\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.94$ and 2.53 (each $1 \mathrm{H}, \mathrm{dt}, J 13,9$ and $\left.9,5-\mathrm{H}_{2}\right), 2.84-3.01(1 \mathrm{H}, \mathrm{m}, 4-$ H), 3.27-3.39 (1 H, m, 1-H), $3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}_{2} \mathrm{C}\right), 4.51(2 \mathrm{H}, \mathrm{d}$, separation 6, $\left.\mathrm{CH}_{2} \mathrm{OCO}\right), 5.63(1 \mathrm{H}, \mathrm{t}, J 6,3-\mathrm{H}), 5.84(1 \mathrm{H}, \mathrm{t}, J 6$, $2-\mathrm{H})$ and $7.28-7.43,7.46-7.57,7.88-7.97$ and $7.99-8.07$ (6, 3, 4 and 2 H , each $\mathrm{m}, 3 \times \mathrm{Ph}) ; m / z(\mathrm{FAB}) 503\left(\mathrm{MH}^{+}, 5 \%\right), 381(10)$ and $105\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}, 100\right)$ (Found: $\mathrm{C}, 69.2 ; \mathrm{H}, 5.4 . \mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{8}$ requires $\mathrm{C}, 69.3 ; \mathrm{H}, 5.20 \%$).

Preparation of tert-Butyldimethylsilyl (1R*,2S*,3R*,4R*)-2,3-Dibenzoyloxy-4-(tert-butyldimethylsiloxymethyl)cyclopentane-1-carboxylate 22c.-tert-Butyldimethylsilyl triflate $\left(0.147 \mathrm{~cm}^{3}\right.$, $0.169 \mathrm{~g}, 0.64 \mathrm{mmol})$ and triethylamine $\left(0.134 \mathrm{~cm}^{3}, 0.097 \mathrm{~g}, 0.96\right.$ $\mathrm{mmol})$ were added to a stirred, cooled $\left(\mathrm{CCl}_{4}\right.$-solid CO_{2}-bath) solution of the crude hydroxy acid $17(0.062 \mathrm{~g}, \sim 0.16 \mathrm{mmol})$ in dry dichloromethane ($1 \mathrm{~cm}^{3}$) under argon. After 1.5 h , the mixture was allowed to warm to room temperature and was concentrated. Subjection of the residue to silica gel column chromatography [hexanes-EtOAc (1:1) as eluent] gave the title compound 22c $(0.084 \mathrm{~g}, \sim 85 \%)$ as an oil, $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 1725 (ester $\mathrm{C}=\mathrm{O}$); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 203(\varepsilon 25300)$, 229 (36 200), 274 (2800) and 281 (2300); $\delta\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.08,0.10$ and $0.27\left(3,3\right.$ and 6 H , each s, $\left.2 \times \mathrm{Me}_{2} \mathrm{Si}\right), 0.90$ and 0.92 (each 9 H , s, $2 \times \mathrm{Me}_{3} \mathrm{C}$), 1.89 and 2.36 [each 1 H , ddd ($J 13,10.5$ and 8.5) and $\operatorname{dt}(J 13,9$ and 9$\left.), 5-\mathrm{H}_{2}\right], 2.46-2.58(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.30(1 \mathrm{H}$, $\mathrm{dt}, J 10,8.5$ and $8.5,1-\mathrm{H}), 3.71$ and 3.84 [each 1 H , dd $(J 10$ and 4) and dd ($J 10$ and 5$\left.), \mathrm{CH}_{2} \mathrm{O}\right], 5.48(1 \mathrm{H}, \mathrm{t}, J 5,3-\mathrm{H}), 5.67(1 \mathrm{H}$, dd, $J 8$ and $5,2-\mathrm{H}$) and 7.29-7.41, 7.46-7.56 and 7.89-7.98 (4, 2 and 4 H , each $\mathrm{m}, 2 \times \mathrm{Ph}$); m / z (FAB) $613\left(\mathrm{MH}^{+}, 20 \%\right), 555$ $\left(\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{O}_{7} \mathrm{Si}_{2}{ }^{+}, 36\right), 481\left(\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{Si}^{+}, 34\right)$ and $179(100)$ (Found: C, $64.8 ; \mathrm{H}, 7.8 ; \mathrm{Si}, 8.9 . \mathrm{C}_{33} \mathrm{H}_{48} \mathrm{O}_{7} \mathrm{Si}_{2}$ requires $\mathrm{C}, 64.7 ; \mathrm{H}$, 7.9; Si, 9.15%).

Preparation of (1R*,2S*,3R*,4R*)-2,3-Dibenzoyloxy-4-(tert-butyldimethylsiloxymethyl)cyclopentane-1-carboxylic Acid 22d.-(a) A solution of potassium carbonate $(0.100 \mathrm{~g}, 0.72$ $\mathrm{mmol})$ in water $\left(1 \mathrm{~cm}^{3}\right)$ was added to a stirred solution of the silyl ester 22c $(0.201 \mathrm{~g}, 0.33 \mathrm{mmol})$ in methanol ($3 \mathrm{~cm}^{3}$)-THF (1 cm^{3}). After 1 h , the mixture was concentrated to $\sim 25 \%$ of its volume and diluted with brine $\left(6 \mathrm{~cm}^{3}\right)$. The solution was washed with ethyl acetate $(2 \times)$. Acidification of the aqueous phase with 10% hydrochloric acid was followed by extraction with ethyl acetate $(2 \times)$. Evaporation of the dried $\left(\mathrm{MgSO}_{4}\right)$ organic layer gave the title acid $22 \mathrm{~d}\left(0.137 \mathrm{~g}, 84 \%\right.$) as an oil, $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3400 \mathrm{br}(\mathrm{OH})$ and 1725 (ester $\mathrm{C}=\mathrm{O})$; $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 202(\varepsilon$ 16 100), $229(22300)$ and $273(1600) ; \delta\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.07$ and 0.09 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}$), $0.92\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{C}\right), 1.99$ and 2.40 [each 1 H , ddd $(J 13,10$ and 8.5$)$ and $\operatorname{dt}(J 13,8.5$ and 8.5$), 5-\mathrm{H}_{2}$], $2.51-2.61(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.35(1 \mathrm{H}$, apparent q, separation 8 , 1 $\mathrm{H}), 3.73$ and 3.96 [each 1 H , dd ($J 10$ and 4) and dd ($J 10$ and 5), $\left.\mathrm{CH}_{2} \mathrm{O}\right], 5.48(1 \mathrm{H}, \mathrm{t}, J 5,3-\mathrm{H}), 5.70(1 \mathrm{H}$, dd, $J 7.5$ and $5,2-\mathrm{H})$ and 7.29-7.42, 7.46-7.57 and 7.90-7.99 (4, 2 and 4 H , each m , $2 \times \mathrm{Ph}) ; m / z(\mathrm{FAB}) 499\left(\mathrm{MH}^{+}, 100\right), 481\left(\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{Si}^{+}\right.$, 55) and 179 (65).
(b) A solution of TBAF in THF ($1 \mathrm{~mol} \mathrm{dm}^{-3} ; 0.15 \mathrm{~cm}^{3}, 0.15$ $\mathrm{mmol})$ was added to a stirred solution of the silyl ester 22c (0.095 $\mathrm{g}, 0.15 \mathrm{mmol})$ in dry THF ($1 \mathrm{~cm}^{3}$) under argon. After 0.75 h , the mixture was concentrated and the residue was dissolved in ethyl acetate $\left(2 \mathrm{~cm}^{3}\right)$. The solution was washed successively with 10% hydrochloric acid ($2 \mathrm{~cm}^{3}$) and brine ($2 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to leave the acid $22 \mathrm{~d}(0.059 \mathrm{~g}, 77 \%$), identified by its $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum.

Reaction of the Anhydride 16 with Sodium Borohydride in DMF followed by Hydrogen Chloride in Benzyl Alcohol.-A solution of sodium borohydride $(0.25 \mathrm{~g}, 6.61 \mathrm{mmol})$ in dry DMF ($20 \mathrm{~cm}^{3}$) was added to a stirred, ice-cooled solution of the anhydride $16(1.00 \mathrm{~g}, 2.63 \mathrm{mmol})$ in dry DMF ($20 \mathrm{~cm}^{3}$). After 5 h , the mixture was concentrated and the residue was partitioned between ethyl acetate ($20 \mathrm{~cm}^{3}$) and saturated aq. sodium hydrogen carbonate ($20 \mathrm{~cm}^{3}$). Following acidification with 10% hydrochloric acid, the aqueous layer was extracted with ethyl acetate $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with brine $\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was dissolved in chloroform $\left(1 \mathrm{~cm}^{3}\right)$ and treated with a saturated solution of hydrogen chloride in benzyl alcohol ($2 \mathrm{~cm}^{3}$) for 1 h . Evaporation of the solvent (with addition of water to produce an azeotrope) gave an oil, which was subjected to silica gel column chromatography [hexanes-EtOAc $(5: 3)$ as eluent] to afford two fractions.

The first eluted material was crystallised from chloroformhexanes to give dibenzyl $\mathrm{t}-4, \mathrm{t}-5$-dibenzoyloxycyclopentane $-\mathrm{r}-1, \mathrm{c}$ -3-dicarboxylate $20 \mathrm{c}(0.060 \mathrm{~g}, 4 \%)$, m.p. $77-78^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1740 and 1720 (ester $\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 204(\varepsilon 25200)$ and $230(24600) ; \delta\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.34$ and 2.63 (each 1 H , dt, J 13.5, 9 and $9,2-\mathrm{H}_{2}$), $3.27-3.38(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 3-\mathrm{H}), 5.18(4 \mathrm{H}$, $\mathrm{AB} \mathrm{q}, J 13$, separation of inner lines $2,2 \times \mathrm{CH}_{2} \mathrm{Ph}$), 5.84-5.91 (2 $\mathrm{H}, \mathrm{m}, 4-$ and $5-\mathrm{H})$ and $7.25-7.40,7.49-7.57$ and 7.87-7.94 (14, 2 and 4 H , each $\mathrm{m}, 4 \times \mathrm{Ph}) ; m / z(\mathrm{FAB}) 579\left(\mathrm{MH}^{+}, 12 \%\right), 105$ $\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}, 90\right)$ and $91\left(\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}, 100\right)$ (Found: C, 72.4; H, 5.1. $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{O}_{8}$ requires $\mathrm{C}, 72.65 ; \mathrm{H}, 5.25 \%$).
The second eluted material, isolated as a $\operatorname{syrup}(0.850 \mathrm{~g}, 68 \%)$, was benzyl ($1 \mathrm{R}^{*}, 2 \mathrm{~S}^{*}, 3 \mathrm{R}^{*}, 4 \mathrm{R}^{*}$)-2,3-dibenzoyloxy-4-(hydroxy-methyl)cyclopentane-1-carboxylate 22e, $v_{\max }(f i l m) / \mathrm{cm}^{-1} 3500 \mathrm{br}$ (OH) and $1725($ ester $\mathrm{C}=\mathrm{O})$; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 201(\varepsilon 44200)$ and $229(30600) ; \delta\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.87$ and 2.41 (each $1 \mathrm{H}, \mathrm{dt}, J$ 13, 9.5 and $\left.9.5,5-\mathrm{H}_{2}\right), 2.48-2.70(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and OH$), 3.30-3.41$ $(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.76\left(2 \mathrm{H}\right.$, br d, separation $\left.4.5, \mathrm{CH}_{2} \mathrm{OH}\right), 5.18$ (2 $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.51(1 \mathrm{H}, \mathrm{t}, J 5,3-\mathrm{H}), 5.74(1 \mathrm{H}, \mathrm{dd}, J 7$ and $5.5,2-\mathrm{H})$ and 7.25-7.43, 7.49-7.59 and 7.89-8.01 (9, 2 and 4 H , each m , $3 \times \mathrm{Ph}$) (in a COSY 90° experiment, the following connectivities were established: $\delta 5.74$ to 5.51 to $2.48-2.70$ to 2.41 to $1.87 ; \delta 5.74$ to $3.30-3.41$ to $2.41 ; \delta 3.76$ to $2.48-2.70$ to $1.87 ; \delta 3.30-3.41$ to 1.87); m / z (FAB) $475\left(\mathrm{MH}^{+}, 100 \%\right.$) and 149 (63) (Found: C, $71.1 ; \mathrm{H}, 5.6 . \mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{7}$ requires $\mathrm{C}, 70.85 ; \mathrm{H}, 5.50 \%$).
(b) The aforecited reaction was repeated using the anhydride $16(5.00 \mathrm{~g}, 13.2 \mathrm{mmol})$. Work-up as before gave the benzyl ester 22e ($2.76 \mathrm{~g}, 44 \%$).

Preparation of Benzyl (1R*,2S*,3R*,4R*)-2,3-Dibenzoyl-4(benzoyloxymethyl) cyclopentane-1-carboxylate 22f.-A mixture of the alcohol $22 \mathrm{e}(2.76 \mathrm{~g}, 5.82 \mathrm{mmol})$, dry chloroform $\left(66 \mathrm{~cm}^{3}\right)$, dry pyridine $\left(4.70 \mathrm{~cm}^{3}, 4.60 \mathrm{~g}, 58.2 \mathrm{mmol}\right)$, benzoyl chloride $\left(3.36 \mathrm{~cm}^{3}, 4.07 \mathrm{~g}, 28.9 \mathrm{mmol}\right)$ and DMAP $(1.07 \mathrm{~g}, 8.76 \mathrm{mmol})$ was stirred under argon for 24 h . The solution was then concentrated and the residue, dissolved in ethyl acetate $\left(200 \mathrm{~cm}^{3}\right)$, was washed successively with 10% hydrochloric acid $(2 \times 65$ cm^{3}), saturated aq. sodium hydrogen carbonate $\left(2 \times 65 \mathrm{~cm}^{3}\right)$ and water $\left(2 \times 65 \mathrm{~cm}^{3}\right)$. The dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase was concentrated and the resultant oil was subjected to silica gel column chromatography [hexanes-EtOAc ($4: 1$) as eluent] to give the title compound $22 \mathrm{f}(3.02 \mathrm{~g}, 90 \%)$ as a syrup,
$v_{\max }($ film $) / \mathrm{cm}^{-1} 1730$ (ester $\left.\mathrm{C}=\mathrm{O}\right) ; \quad \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 201$ (ε $59500), 230(42900), 269(3000), 274$ (3300) and 281 (2700); $\delta\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.95$ and 2.53 (each $1 \mathrm{H}, \mathrm{dt}, J 13,9$ and $9,5-$ $\left.\mathrm{H}_{2}\right), 2.84-2.97(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}) 3.38(1 \mathrm{H}, \mathrm{dt}, J 9,9$ and $7,1-\mathrm{H}), 4.48$ and 4.52 (each 1 H, dd, $J 12$ and $6, \mathrm{CH}_{2} \mathrm{OCO}$), $5.64(1 \mathrm{H}, \mathrm{t}, J 5.5$, $3-\mathrm{H}), 5.85(1 \mathrm{H}$, dd, $J 6.5$ and $5.5,2-\mathrm{H})$ and $7.25-7.42,7.48-7.57$ and 7.89-8.06 (14, 4 and 2 H , each $\mathrm{m}, 4 \times \mathrm{Ph}$); m / z (FAB) 579 $\left(\mathrm{MH}^{+}, 5 \%\right), 457\left(\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{O}_{6}{ }^{+}, 7\right)$ and $105\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}, 100\right)$ (Found: C, 72.4; H, 5.2. $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{O}_{8}$ requires $\mathrm{C}, 72.65 ; \mathrm{H}, 5.25 \%$).

Preparation of (1R*,2S*,3R*,4R*)-2,3-Dibenzoyloxy-4- (benz-oyloxymethyl)cyclopentane-1-carboxylic Acid 18.-A stirred mixture of the benzyl ester $22 \mathrm{f}(2.32 \mathrm{~g}, 4.01 \mathrm{mmol}), 10 \%$ palladium-charcoal ($1.2 \mathrm{~g}, 0.52$ mass equiv.) and ethyl acetate ($35 \mathrm{~cm}^{3}$) was left under hydrogen for 14 h . The mixture was then filtered through Celite and the filtrate was concentrated to give the title compound $18(1.75 \mathrm{~g}, 89 \%)$ as a foam, $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3000 \mathrm{br}(\mathrm{OH})$ and 1725 (ester $\mathrm{C}=\mathrm{O})$; $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 202(\varepsilon$ 30300), 229 (35 200), 274 (2700) and 281 (2200); $\delta(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.99$ and 2.56 (each $1 \mathrm{H}, \mathrm{dt}, J 13.5,9$ and $9,5-\mathrm{H}_{2}$), 2.87$3.02(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.36(1 \mathrm{H}, \mathrm{dt}, J 9,9$ and $6,1-\mathrm{H}), 4.52(2 \mathrm{H}, \mathrm{d}$, separation $\left.5.5, \mathrm{CH}_{2} \mathrm{OCO}\right), 5.60(1 \mathrm{H}, \mathrm{t}, J 7,3-\mathrm{H}), 5.84(1 \mathrm{H}, \mathrm{t}, J$ $5.5,2-\mathrm{H})$ and $7.30-7.41,7.47-7.57$ and $7.89-8.06(6,3$ and 6 H , each $m, 3 \times \mathrm{Ph}) ; m / z(\mathrm{FAB}) 489\left(\mathrm{MH}^{+}, 82 \%\right), 367$ (78) and 307 (100) (Found: C, $68.5 ; \mathrm{H}, 4.6 . \mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{8}$ requires $\mathrm{C}, 68.85 ; \mathrm{H}$, 4.95\%)

Preparation of Benzyl $6 \beta-\left[\left(1^{\prime} \mathrm{R}, 2^{\prime} \mathrm{S}, 3^{\prime} \mathrm{R}, 4^{\prime} \mathrm{R}\right)-2^{\prime}, 3^{\prime}\right.$-Dibenzoyl-oxy-4'-(benzoyloxymethyl)cyclopentane-1'-carboxamido]penicillanate 10 b and Benzyl $6 \beta-\left[\left(1^{\prime} \mathrm{S}, 2^{\prime} \mathrm{R}, 3^{\prime} \mathrm{S}, 4^{\prime} \mathrm{S}^{\prime}\right)-2^{\prime}, 3^{\prime}\right.$-Dibenzoyloxy-4'-(benzoyloxymethyl)cyclopentane-1'-carboxamido]penicillanate 13a.-Oxalyl dichloride ($0.004 \mathrm{~cm}^{3}, 0.006 \mathrm{~g}, 0.047 \mathrm{mmol}$) followed by a drop of DMF were added to a stirred, cooled (iceNaCl bath $)$ solution of the (\pm)-acid $22 f(0.019 \mathrm{~g}, 0.039 \mathrm{mmol})$ in dry dichloromethane $\left(0.75 \mathrm{~cm}^{3}\right)$. After 0.5 h , a further quantity of oxalyl dichloride $\left(0.004 \mathrm{~cm}^{3}, 0.006 \mathrm{~g}, 0.047 \mathrm{mmol}\right)$ was added and the mixture was allowed to warm to room temperature. Evaporation left an oil, which was dissolved in dry dichloromethane $\left(0.75 \mathrm{~cm}^{3}\right)$. A solution of the amine $9 \mathrm{~b}(0.021 \mathrm{~g}, 0.068$ mmol) in dry dichloromethane $\left(0.75 \mathrm{~cm}^{3}\right)$ followed by DMAP $(0.005 \mathrm{~g}, 0.041 \mathrm{mmol})$ were added and the mixture was stirred under argon for 1 h . The residue, obtained on evaporation of the solvent, was dissolved in chloroform $\left(1 \mathrm{~cm}^{3}\right)$ and the solution was washed successively with 10% hydrochloric acid $(2 \times 1$ cm^{3}) and water ($1 \mathrm{~cm}^{3}$). Evaporation of the dried (MgSO_{4}) organic phase and subjection of the residue to silica gel column chromatography [hexanes-EtOAc (1:1) as eluent] gave a foam $(0.019 \mathrm{~g}, 63 \%)$, which was mainly a $1: 1$ mixture of the title compounds 10 b and $13 \mathrm{a} ; \delta\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ inter alia 1.38 , $1.41,1.57$ and 1.64 (each $\left.3 \mathrm{H}, \mathrm{s}, 2 \times 2-\mathrm{Me}_{2}\right), 2.17-2.35(4 \mathrm{H}, \mathrm{m}$, $\left.2 \times 5^{\prime}-\mathrm{H}_{2}\right), 2.94-3.08\left(2 \mathrm{H}, \mathrm{m}, 2 \times 4^{\prime}-\mathrm{H}\right), 3.14-3.25(2 \mathrm{H}, \mathrm{m}$, $\left.2 \times 1^{\prime}-\mathrm{H}\right), 4.49$ and $4.52($ each $1 \mathrm{H}, \mathrm{s}, 2 \times 3-\mathrm{H}), 4.54(4 \mathrm{H}, \mathrm{d}$, separation $\left.6,2 \times \mathrm{CH}_{2} \mathrm{OCOPh}\right), 5.20\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 5.34$ and 5.40 (each 1 H , dd, $J 9$ and $\left.5.5,2 \times 3^{\prime}-\mathrm{H}\right), 5.58$ and 5.61 (each $1 \mathrm{H}, \mathrm{d}, J 4.5,2 \times 5-\mathrm{H}), 5.72(2 \mathrm{H}, \mathrm{dd}, J 9$ and $4.5,2 \times 6-\mathrm{H}$) and $7.30-7.43,7.45-7.62$ and $7.90-8.04(\sim 22,8$ and 12 , each m, $8 \times \mathrm{Ph}$ and $2 \times \mathrm{CONH}$).

Preparation of Benzyl 6 6 -Aminopenicillanate 1 β-Oxide 9c.MCPBA ($\sim 80 \% ; 14.1 \mathrm{~g}, \sim 65 \mathrm{mmol})$ was added to a stirred, icecooled solution of the toluene-p-sulfonic acid (PTSA) salt of the penicillanate $9 \mathrm{~b}(30.0 \mathrm{~g}, 62.6 \mathrm{mmol})$ in a mixture of dichloromethane $\left(180 \mathrm{~cm}^{3}\right)$ and DMF ($120 \mathrm{~cm}^{3}$). After 2 h , the mixture was filtered and the filtrate was partitioned between saturated aq. sodium hydrogen carbonate ($250 \mathrm{~cm}^{3}$) and chloroform ($100 \mathrm{~cm}^{3}$). The aqueous layer was extracted with chloroform ($2 \times 100 \mathrm{~cm}^{3}$) and the combined organic extracts were washed with water $\left(80 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and
concentrated. Subjection of the residue to silica gel column chromatography [EtOAc- PrOH -water ($4: 1: 2$; upper phase) as eluent; column packed using EtOAc] and crystallisation of the purified product from chloroform-hexanes gave the title compound $9 \mathrm{c}\left(18.6 \mathrm{~g}, 92 \%\right.$), m.p. $146-148^{\circ} \mathrm{C}$ (decomp.); $[\alpha]_{\mathrm{D}}+$ $280\left(0.5 \%\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3420$ and $3330(\mathrm{NH})$, $1770(\beta$-lactam $\mathrm{C}=\mathrm{O})$ and 1750 (ester $\mathrm{C}=\mathrm{O}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}$ 205 ($\varepsilon 12000$), 257 (850), 263 (880) and $268(850) ; \delta(300 \mathrm{MHz} ;$ CDCl_{3}) 1.07 and 1.65 (each $3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{2}$), $2.2\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right.$), $4.64(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 4.69(1 \mathrm{H}, \mathrm{d}, J 5,5-\mathrm{H}), 4.92(1 \mathrm{H}, \mathrm{d}, J 5,6-\mathrm{H})$, 5.16 and 5.29 (each $\left.1 \mathrm{H}, \mathrm{d}, J 12, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $7.38(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$; m / z (FAB) $323\left(\mathrm{MH}^{+}, 19 \%\right), 205(37)$ and $91\left(\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}, 100\right)$ (Found: C, 55.9; H, 5.5; N, 8.7; S, 10.2. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires C, 55.9; H, 5.65; N, 8.70; S, 9.95%).

Reaction of the (\pm)-Acid 18 with Oxalyl Dichloride followed by the Aminopenicillanate 9 c .-Oxalyl dichloride $\left(0.106 \mathrm{~cm}^{3}\right.$, $0.154 \mathrm{~g}, 1.21 \mathrm{mmol}$) followed by two drops of DMF were added to a stirred, cooled (ice- NaCl bath) solution of the (\pm)-acid 18 $(0.459 \mathrm{~g}, 0.94 \mathrm{mmol})$ in dry dichloromethane $\left(3 \mathrm{~cm}^{3}\right)$ under argon. The mixture was allowed to warm to room temperature over a period of 1.25 h and concentrated (with addition of PhMe and re-evaporation). The resultant oil was dissolved in dry, ethanol-free chloroform $\left(5 \mathrm{~cm}^{3}\right)$ and the solution was treated with the amine $9 \mathrm{c}(0.315 \mathrm{~g}, 0.98 \mathrm{mmol})$ and DMAP $(0.121 \mathrm{~g}, 0.99$ mmol). After 1.5 h , the mixture was concentrated and the residue was dissolved in ethyl acetate $\left(30 \mathrm{~cm}^{3}\right)$. The solution was washed successively with 10% hydrochloric acid ($2 \times 10 \mathrm{~cm}^{3}$) and water $\left(2 \times 10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Subjection of the resultant oil to silica gel column chromatography [hexanes-EtOAc (2:1) as eluent] gave two fractions.

The first eluted material $(0.313 \mathrm{~g}, 42 \%)$, isolated as a foam which crystallised on addition of diethyl ether-hexanes, was benzyl $6 \beta-\left[\left(1^{\prime} \mathrm{R}, 2^{\prime} \mathrm{S}, 3^{\prime} \mathrm{R}, 4^{\prime} \mathrm{R}\right)-2^{\prime}, 3^{\prime}\right.$-dibenzoyloxy- 4^{\prime} - (benzoyloxy-methyl)cyclopentane-1'-carboxamido]penicillanate 1β-oxide 10 d , m.p. $79-80^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+116\left(0.3 \%\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3380br (NH), 1800 (β-lactam $\mathrm{C}=\mathrm{O}$), 1750sh and 1725 (ester $\mathrm{C}=\mathrm{O}$) and 1680 (amide $\mathrm{C}=\mathrm{O}$); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 203$ (840900), 229 (40 000), 269 (3000), 274 (3200) and $281(2600) ; \delta(300 \mathrm{MHz}$; CDCl_{3}) 1.03 and $1.60\left(\right.$ each $3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{2}$), 2.11 and 2.37 (each 1 $\mathrm{H}, \mathrm{dt}, J 14,9.5$ and $\left.9.5,5^{\prime}-\mathrm{H}_{2}\right), 2.86-3.00\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.10(1$ $\mathrm{H}, \mathrm{dt}, J 9,9$ and $\left.6,1^{\prime} \mathrm{H}\right), 4.52(2 \mathrm{H}$, apparent dd, separation 6 and $\left.1.5, \mathrm{CH}_{2} \mathrm{OCO}\right), 4.66(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 5.05(1 \mathrm{H}, \mathrm{d} J 4.5,5-\mathrm{H}), 5.17$ and 5.29 (each $\left.1 \mathrm{H}, \mathrm{d}, J 12, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.55\left(1 \mathrm{H}, \mathrm{t}, J 6,3^{\prime}-\mathrm{H}\right), 5.62$ $\left(1 \mathrm{H}, \mathrm{t}, J 6,2^{\prime}-\mathrm{H}\right), 6.09(1 \mathrm{H}, \mathrm{dd}, J 10$ and $4.5,6-\mathrm{H})$ and $7.29-7.42$, 7.47-7.56, 7.91-7.96 and 8.03-8.08 (11, 4, 4 and 2 H , each m, $4 \times \mathrm{Ph}$ and CONH) [addition of $\mathrm{D}_{2} \mathrm{O}$ caused the signal of δ 6.09 to appear as a d ($J 4.5$)]; m / z (FAB) $793\left(\mathrm{MH}^{+}, 100 \%\right)$ (Found: C, 64.9; H, 5.2; N, 3.6; S, 4.4. $\mathrm{C}_{43} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{~S}$ requires C, $65.15 ; \mathrm{H}, 5.10 ; \mathrm{N}, 3.55 ; \mathrm{S}, 4.05 \%$).

The second eluted material ($0.299 \mathrm{~g}, 40 \%$), isolated as a foam, was benzyl $6 \beta-\left[\left(1^{\prime} S, 2^{\prime} \mathrm{R}, 3^{\prime} \mathrm{S}, 4^{\prime} \mathrm{S}\right)-2^{\prime}, 3^{\prime}\right.$-dibenzoyloxy-4' (benzoyl-oxymethyl)cyclopentane-1'-carboxamido]penicillanate 1β-oxide $13 \mathrm{c} ;[\alpha]_{\mathrm{D}}+92\left(0.3 \%\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350 \mathrm{br}(\mathrm{NH})$, $1795(\beta$-lactam $\mathrm{C}=\mathrm{O}), 1750$ sh and 1725 (ester $\mathrm{C}=\mathrm{O}$) and 1680 (amide $\mathrm{C}=\mathrm{O}$); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 202(\varepsilon 44600), 229$ (39000), 274 (2900) and $281(2400) ; \delta\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.06$ and 1.67 (each 3 $\mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{2}$), 2.00 and 2.40 (each $1 \mathrm{H}, \mathrm{dt}, J 13.5,9$ and $9,5^{\prime} \cdot \mathrm{H}_{2}$), 2.82-2.96 ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$), 3.16-3.27 ($\left.1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 4.52(2 \mathrm{H}, \mathrm{d}$, separation $\left.5.5, \mathrm{CH}_{2} \mathrm{OCO}\right), 4.69(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 4.99(1 \mathrm{H}, \mathrm{d}, J 4.5$, $5-\mathrm{H}), \quad 5.17$ and 5.29 (each $1 \mathrm{H}, \mathrm{d}, \quad \mathrm{J} 12, \quad \mathrm{CH}_{2} \mathrm{Ph}$), $5.61-5.70\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}\right.$ - and $\left.3^{\prime}-\mathrm{H}\right), 6.06(1 \mathrm{H}, \mathrm{dd}, J 10$ and $4.5,6-\mathrm{H})$ and 7.39-7.57, 7.90-7.97 and 8.04-8.07 (15, 4 and 2 H , each m, $4 \times \mathrm{Ph}$ and CONH) [addition of $\mathrm{D}_{2} \mathrm{O}$ caused the signal at δ 6.06 to appear as a d ($J 4.5$)]; m / z (FAB) $793\left(\mathrm{MH}^{+}, 5 \%\right)$ and 149 (100) (Found: C, 64.8; H, 5.4; N, 3.5; S, 4.4\%).

An attempt to scale up the reaction $(5 \times)$ led to considerably reduced yields of compounds 10 d and 13 c .

Reduction of the Penicillin Sulfoxides 10d and 13c.-(a) Phosphorus(III) bromide ($0.10 \mathrm{~cm}^{3}, 0.282 \mathrm{~g}, 1.04 \mathrm{mmol}$) was added to a stirred, cooled $\left(-7^{\circ} \mathrm{C}\right.$; ice- NaCl bath) solution of the sulfoxide $10 \mathrm{~d}(0.380 \mathrm{~g}, 0.48 \mathrm{mmol})$ in dry DMF ($4 \mathrm{~cm}^{3}$). After 0.5 h , ice-cold, saturated aq. sodium hydrogen carbonate (7 cm^{3}) was added and the mixture was extracted with ethyl acetate ($5 \times 20 \mathrm{~cm}^{3}$). The combined organic extracts were washed with water $\left(5 \times 20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Subjection of the resultant oil to silica gel column chromatography [hexanes-EtOAc (3:1) as eluent] gave benzyl $6 \beta-\left[\left(1^{\prime} \mathrm{R}, 2^{\prime} \mathrm{S}, 3^{\prime} \mathrm{R}, 4^{\prime} \mathrm{R}\right)-2^{\prime}, 3^{\prime}\right.$-dibenzoyloxy-4'-(benzoyloxymethyl)-cyclopentane- 1^{\prime}-carboxamido]penicillanate $10 \mathrm{~b}(0.283 \mathrm{~g}, 76 \%)$ as a foam; $[\alpha]_{\mathrm{D}}+126\left(0.3 \% \mathrm{in} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3340(\mathrm{NH})$, 1785 (β-lactam $\mathrm{C}=\mathrm{O}$), 1720 (ester $\mathrm{C}=\mathrm{O}$) and 1685 (amide $\mathrm{C}=\mathrm{O}$); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 204$ ($\varepsilon 35400$), 229 (38 800), 269 (3000), 274 (3200) and 281 (2700); $\delta\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.39$ and 1.57 (each 3 $\mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{2}$), 2.28 (2 H , br t, separation 9.5, $5^{\prime} \cdot \mathrm{H}_{2}$), 2.94-3.10 (1 $\left.\mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.20\left(1 \mathrm{H}, \mathrm{dt}, J 9,9\right.$ and $\left.4,1^{\prime}-\mathrm{H}\right), 4.49(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$, $4.54\left(2 \mathrm{H}, \mathrm{d}\right.$, separation 6, $\mathrm{CH}_{2} \mathrm{OCO}$), $5.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.35$ $\left(1 \mathrm{H}, \mathrm{dd}, J 9\right.$ and $\left.5,3^{\prime}-\mathrm{H}\right)$, $5.58\left(1 \mathrm{H}, \mathrm{dd}, J 5\right.$ and $\left.4,2^{\prime}-\mathrm{H}\right)$, 5.61 (1 $\mathrm{H}, \mathrm{d}, J 4,5-\mathrm{H}), 5.73(1 \mathrm{H}, \mathrm{dd}, J 9$ and $4,6-\mathrm{H}), 7.30-7.41,7.48-7.58$ and 7.92-8.05 (11, 3 and 6 H , each $\mathrm{m}, 4 \times \mathrm{Ph}$) and $7.62(1 \mathrm{H}$, br d, J 9, CONH); m / z (FAB) $528\left(\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{NO}_{8}^{+}, 5 \%\right.$), 250 $\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~S}^{+}, 37\right)$ and $105\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}, 100\right)$ (Found: C, 66.2; $\mathrm{H}, 5.2 ; \mathrm{N}, 3.7 ; \mathrm{S}, 4.5 . \mathrm{C}_{43} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}$ requires C, 66.5; H, 5.20; N, 3.60 ; S, 4.15%).
(b) The sulfoxide $13 \mathrm{c}(0.414 \mathrm{~g}, 0.522 \mathrm{mmol})$ was subjected to the action of phosphorus(III) bromide as described in the foregoing experiment. Work-up and purification as before gave benzyl $6 \beta-\left[\left(1^{\prime} \mathrm{S}, 2^{\prime} \mathrm{R}, 3^{\prime} \mathrm{S}, 4^{\prime} \mathrm{S}\right)-2^{\prime}, 3^{\prime}\right.$-dibenzoyloxy-4'-(benzoyloxymethyl) cyclopentane -1^{\prime}-carboxamido]penicillanate $13 \mathrm{a}(0.325 \mathrm{~g}$, 80%) as a foam; $[\alpha]_{\mathrm{D}}+75\left(0.2 \%\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3340 (NH), 1785 (β-lactam $\mathrm{C}=\mathrm{O}$), 1720 (ester $\mathrm{C}=\mathrm{O}$) and 1685 (amide $\mathrm{C}=\mathrm{O}$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 202$ ($\varepsilon 52400$), 229 (39 400), 274 (3000) and 281 (2500); $\delta\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 1.41 and 1.64 (each 3 $\mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{2}$), 2.15-2.37 ($2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}$), 2.93-3.07 ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$), $3.18(1 \mathrm{H}, \mathrm{dt}, J 8,8$ and $4,1-\mathrm{H}), 4.52(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 4.54(2 \mathrm{H}, \mathrm{d}$, separation 6, $\mathrm{CH}_{2} \mathrm{OCO}$), $5.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.39(1 \mathrm{H}, \mathrm{dd}$, $J 9$ and $\left.5,3^{\prime}-\mathrm{H}\right)$, $5.58(1 \mathrm{H}, \mathrm{d}, J 4,5-\mathrm{H}), 5.61(1 \mathrm{H}, \mathrm{dd}, J 5$ and $\left.4,2^{\prime}-\mathrm{H}\right), 5.72(1 \mathrm{H}, \mathrm{dd}, J 9$ and $4,6-\mathrm{H})$ and $7.32-7.42$, $7.48-$ 7.62 and $7.94-8.05$ (11,4 and 6 H , each $\mathrm{m}, 4 \times \mathrm{Ph}$ and CONH) [addition of $\mathrm{D}_{2} \mathrm{O}$ caused the signal of $\delta 5.72$ to appear as a d ($J 4$) and the integral of the signal at $\delta 7.48$ 7.62 to reduce to 3 H$] ; m / z$ (FAB) $777\left(\mathrm{MH}^{+}, 8 \%\right), 528$ $\left(\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{NO}_{8}{ }^{+}, 12\right)$ and $250\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~S}^{+}, 100\right)$ (Found: C, 66.2; H, 5.4; N, 3.7; S, 4.4\%).

Rearrangement of the Penicillanates 10b and 13a.-(a) Sodium hydroxide ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 0.26 \mathrm{~cm}^{3}, 0.26 \mathrm{mmol}$) was added to a stirred solution of the penicillanate $10 b(0.200 \mathrm{~g}, 0.26$ $\mathrm{mmol})$ in DMSO $\left(4 \mathrm{~cm}^{3}\right)$. After 0.75 h , the mixture was acidified with hydrochloric acid ($\sim 5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$), diluted with water (8 cm^{3}) and extracted with ethyl acetate ($5 \times 8 \mathrm{~cm}^{3}$). The combined organic extracts were washed with brine ($5 \times 8 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was dissolved in dry xylenes $\left(4 \mathrm{~cm}^{3}\right)$ and the solution was heated under reflux for 35 min . Evaporation, and subjection of the oil to silica gel column chromatography [hexanes-EtOAc (4:1) as eluent], gave benzyl $2-\left\{2-\left[\left(1^{\prime} \mathrm{R}, 2^{\prime} \mathrm{S}, 3^{\prime} \mathrm{R}, 4^{\prime} \mathrm{R}\right)-2^{\prime}, 3^{\prime}\right.\right.$-dibenzoyl-4'-(benzoyloxymethy () cyclopenty $]$ thiazole-4-carboxamido $\}$-3-methylbut-2enoate $\mathbf{1 2 b}(0.098 \mathrm{~g}, \sim 50 \%$) as a slightly impure foam. A portion was purified further by PLC [hexanes-EtOAc (1:1) as eluent] to give the pure product; $[\alpha]_{\mathrm{D}}-116\left(0.2 \%\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3380(\mathrm{NH}), 1720$ (ester $\mathrm{C}=\mathrm{O}$) and 1675 (amide $\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 202(\varepsilon 52800)$ and $230(46700) ; \delta(300$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 1.85 and 2.20 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}$), 2.12 and 2.73 [each $1 \mathrm{H}, \mathrm{dt}(J 14,9.5$ and 9.5$)$ and $\mathrm{dt}(J 14,9$ and 9$), 5^{\prime}-\mathrm{H}_{2}$], 2.96-3.09 ($\left.1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.05\left(1 \mathrm{H}, \mathrm{dt}, J 9,9\right.$ and $\left.7,1^{\prime}-\mathrm{H}\right), 4.57(2$

H, d, separation 5.5, $\mathrm{CH}_{2} \mathrm{OCO}$), $5.19\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.77(1 \mathrm{H}$, $\left.\mathrm{t}, J 5.5,3^{\prime}-\mathrm{H}\right), 5.84\left(1 \mathrm{H}, \mathrm{dd}, J 7\right.$ and $\left.5.5,2^{\prime}-\mathrm{H}\right), 7.22-7.41,7.47-$ 7.58 and 7.92-8.04 (11, 3 and 6 H , each $\mathrm{m}, 4 \times \mathrm{Ph}), 8.06(1 \mathrm{H}, \mathrm{s}$, thiazole-H) and 8.47 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CONH}$); m / z (FAB) 759 $\left(\mathrm{MH}^{+}, 19 \%\right)$ and $105\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}, 100\right)$ (Found: C, 68.3; H, 5.1; $\mathrm{N}, 3.8 ; \mathrm{S}, 4.6 . \mathrm{C}_{43} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}$ requires C, 68.05; H,5.05; N , $3.70 ;$ S, 4.20%).
(b) The penicillanate $13 \mathrm{a}(0.410 \mathrm{~g}, 0.53 \mathrm{~g})$ was subjected to the action of sodium hydroxide as described in the aforecited experiment. Work-up and purification as before gave benzyl $2-\left\{2-\left[\left(1^{\prime} \mathrm{S}, 2^{\prime} \mathrm{R}, 3^{\prime} \mathrm{S}, 4^{\prime} \mathrm{S}\right)-2^{\prime}, 3^{\prime}\right.\right.$-dibenzoyl-4'-(benzoyloxymethyl)-cyclopenty门thiazole-4-carboxamido\}-3-methylbut-2-enoate ent$12 \mathrm{~b}(0.270 \mathrm{~g}, \sim 67 \%)$ as a slightly impure foam. A portion was purified further by PLC [hexanes-EtOAc (1:1) as eluent] to give the pure thiazole ent-12b; $[\alpha]_{\mathbf{D}}+102\left(0.2 \%\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3380(\mathrm{NH}), 1720$ (ester $\mathrm{C}=\mathrm{O}$) and 1675 (amide $\mathrm{C}=\mathrm{O}$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 203$ ($\varepsilon 56$ 200) and 230 (54500); $\delta(300$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) as for compound 12b; $m / z(\mathrm{FAB}) 759\left(\mathrm{MH}^{+}\right.$, 13%) and $105\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}, 100\right)$ (Found: C, 67.8; H, 5.1; N, 3.5; S, 4.6%).

Reaction of Compounds 12b and ent-12b with Ozone followed by Methanolic Ammonia.-(a) Ozone was passed into a stirred, cooled ($\mathrm{Me}_{2} \mathrm{CO}$-solid CO_{2} bath) solution of compound 12b ($0.219 \mathrm{~g}, 0.288 \mathrm{mmol}$) in dry dichloromethane ($12 \mathrm{~cm}^{3}$) until a blue colour developed. After 0.5 h , the mixture was aerated and allowed to warm to room temperature. Evaporation left a residue, which was stirred with methanolic ammonia $\left(20 \mathrm{~cm}^{3}\right)$ (prepared by saturating MeOH with gaseous NH_{3}) for 48 h . The mixture was filtered through Celite and the filtrate was concentrated. Subjection of the product to silica gel column chromatography [EtOAc-PrOH-water ($4: 1: 2$; upper phase) as eluent; column packed using EtOAc] gave 2-[($\left.1^{\prime} \mathrm{R}, 2^{\prime} \mathrm{S}, 3^{\prime} \mathrm{R}, 4^{\prime} \mathrm{R}\right)$ $2^{\prime}, 3^{\prime}$-dihydroxy-4'-(hydroxymethyl) cyclopenty] ${ }^{\prime}$ thiazole-4-carboxamide 1b $(0.036 \mathrm{~g}, 49 \%)$ as a syrup; $[\alpha]_{\mathrm{D}}-52(0.2 \%$ in MeOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3350 \mathrm{br}(\mathrm{NH}$ and OH) and 1665 (amide $\mathrm{C}=\mathrm{O}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 205$ ($\varepsilon 17100$) and 232 (7300); $\delta(300$ $\left.\mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.64$ and 2.45 [each 1 H , ddd ($J 13,11$ and 8.5) and $\mathrm{dt}(J 13,8.5$ and 8.5$\left.), 5^{\prime}-\mathrm{H}_{2}\right], 2.19-2.32\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.53-3.72$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$ and $1^{\prime}-\mathrm{H}$), $4.01\left(1 \mathrm{H}, \mathrm{dd}, J 5\right.$ and $3.5,3^{\prime}-\mathrm{H}$), $4.16\left(1 \mathrm{H}, \mathrm{dd}, J 9\right.$ and $\left.5.5,2^{\prime}-\mathrm{H}\right)$ and $8.18(1 \mathrm{H}, \mathrm{s}$, thiazole-H); m / z (FAB) $259\left(\mathrm{MH}^{+}, 100 \%\right.$) (Found: C, 46.2; H, 5.2; N, 10.5; $\mathrm{S}, 12.8 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 46.50 ; \mathrm{H}, 5.45 ; \mathrm{N}, 10.85 ; \mathrm{S}$, 12.40%).
(b) Compound ent-12b ($0.360 \mathrm{~g}, 0.47 \mathrm{mmol}$) was subjected to the action of ozone and methanolic ammonia as described in the aforecited experiment. Work-up and purification of the product as before gave $2-\left[\left(1^{\prime} \mathrm{S}, 2^{\prime} \mathrm{R}, 3^{\prime} \mathrm{S}, 4^{\prime} \mathrm{S}\right)-2^{\prime}, 3^{\prime}\right.$-dihydroxy- 4^{\prime}-(hydroxy-methyl)cyclopenty[]thiazole-4-carboxamide ent-1b $(0.065 \mathrm{~g}$, 53%) as a syrup; $[\alpha]_{\mathrm{D}}+51(0.3 \%$ in MeOH$) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3350 \mathrm{br}(\mathrm{NH}$ and OH$)$ and 1665 (amide $\mathrm{C}=\mathrm{O}$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ 205 ($\varepsilon 14200$) and 234 (5700); $\delta\left(300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) 1.67$ and 2.30 [each 1 H , $\operatorname{ddd}(J 13,10.5$ and 8$)$ and $\operatorname{dt}(J 13,8.5$ and 8.5), $5^{\prime}-\mathrm{H}_{2}$], 2.06-2.18 ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$), 3.35-3.56 ($3 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}$ and $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.85\left(1 \mathrm{H}\right.$, apparent q , separation $\left.4.5,3^{\prime}-\mathrm{H}\right), 3.90-$ $4.00\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.63\left(1 \mathrm{H}, \mathrm{d}, J 4.5,3^{\prime}-\mathrm{OH}\right), 4.73(1 \mathrm{H}, \mathrm{t}, J 5.5$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 4.99\left(1 \mathrm{H}, J 6.5,2^{\prime}-\mathrm{OH}\right), 7.64$ and 7.71 (each 1 H , br s, $\left.\mathrm{CONH}_{2}\right)$ and $8.20(1 \mathrm{H}, \mathrm{s}$, thiazole- H$) ; \delta\left(300 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right)$ as for compound 1b (in a COSY 90° experiment, the following connectivities were established: $\delta 4.16$ to 4.01 to 2.19-2.32 to 1.64 to 2.45 to $2.19-2.32$ toे $3.53-3.72 ; \delta 4.16$ to $3.53-3.72$ to 2.45 ; $\delta 3.53-3.72$ to 1.64); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 31.56$ (C-5'), 47.06 and $48.02\left(\mathrm{C}-1^{\prime}\right.$ and $\left.-4^{\prime}\right), 64.35\left(\mathrm{CH}_{2} \mathrm{O}\right), 74.76$ and $79.02\left(\mathrm{C}-2^{\prime}\right.$ and $\left.-3^{\prime}\right), 126.4$ (C-5), 148.7 (C-4), 166.8 (C-2) and 175.1 (CO) (a DEPT 135° experiment caused the signals at $\delta_{\mathrm{c}} 31.56$ and 64.35 to invert and those at $\delta_{\mathrm{c}} 148.7,166.8$ and 175.1 to disappear); m / z (FAB) $259\left(\mathrm{MH}^{+}, 100 \%\right.$) (Found: C, 46.5; H, 5.2; N, 10.5; S, 12.8%).

Preparation of $\left(\mathrm{RR}^{*}, 5 \mathrm{R}^{*}, 6 \mathrm{R}^{*}, 7 \mathrm{~S}^{*}\right)$-6,7-Isopropylidenedioxy-3oxabicyclo[3.2.1] octan-2-one 24.-A solution of the (\pm)-ester $\mathbf{2 2 b}(0.411 \mathrm{~g}, 0.82 \mathrm{mmol})$ in a mixture of ethanol $\left(4.5 \mathrm{~cm}^{3}\right)$ and 10% hydrochloric acid ($9.5 \mathrm{~cm}^{3}$) was heated under reflux for 16 h. The solution was concentrated and the residue partitioned between chloroform $\left(4 \mathrm{~cm}^{3}\right)$ and water $\left(10 \mathrm{~cm}^{3}\right)$. The aqueous phase was washed with chloroform ($10 \times 4 \mathrm{~cm}^{3}$). Concentration of the aqueous phase left a residue, which was stirred with dry acetone ($2 \mathrm{~cm}^{3}$) containing a crystal of PTSA. After 5 days, the mixture was filtered and the filtrate was concentrated. Subjection of the residue to silica gel column chromatography [hexanes-EtOAc (2:1) as eluent; column packed using hexanes-EtOAc-Et ${ }_{3} \mathrm{~N}(66: 33: 1)$] gave the title (\pm)-lactone 24 $(0.022 \mathrm{~g}, 14 \%)$, m.p. $130-132^{\circ} \mathrm{C}\left(\right.$ lit; $\left.^{7} 128-129^{\circ} \mathrm{C}\right) ; v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1745(\delta$-lactone $\mathrm{C}=\mathrm{O})$; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 226$ ($\varepsilon 240$); $\delta\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.33$ and 1.48 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}$), 1.88 and 2.22-2.31 [each $1 \mathrm{H}, \mathrm{br}$ d (separation 12) and $\mathrm{m}, 8-\mathrm{H}_{2}$], 2.43$2.49(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.00(1 \mathrm{H}, \mathrm{dd}, J 4$ and $1,1-\mathrm{H}), 4.19$ and 4.33 [each 1 H , ddd (J 11, 2 and 1) and dd ($J 11$ and 4), 4-H2], 4.58 (1 $\mathrm{H}, \mathrm{dd}, J 5.5$ and $1,6-\mathrm{H})$ and $4.62(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $1,7-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (FAB) $199\left(\mathrm{MH}^{+}, 100 \%\right.$) and 133 (88) (Found: C, 60.7; H, 6.8. Calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}: \mathrm{C}, 60.6 ; \mathrm{H}, 7.10 \%$).

Reaction of the Sulfoxides 10d and 13c with Hydrochloric Acid followed by Acidic Acetone.-(a) A solution of the penicillin sulfoxide 10 d ($0.176 \mathrm{~g}, 0.22 \mathrm{mmol}$) in ethanol ($3.5 \mathrm{~cm}^{3}$) and 10% hydrochloric acid ($3.5 \mathrm{~cm}^{3}$) was heated under reflux for 16 h . Evaporation left a residue, which was partitioned between chloroform ($4 \mathrm{~cm}^{3}$) and water $\left(8 \mathrm{~cm}^{3}\right)$. The aqueous phase was washed with chloroform ($10 \times 4 \mathrm{~cm}^{3}$). Concentration of the aqueous phase left a residue, which was stirred with dry acetone ($4 \mathrm{~cm}^{3}$) containing a crystal of PTSA. After 5 days, the mixture was processed and purified as described in the preceding experiment to give ($1 R, 5 R, 6 R, 7 S$)-6,7-isopropylidenedioxy-3oxabicyclo[3.2.1] octan-2-one $24(0.003 \mathrm{~g}, 7 \%)$ as needles, m.p. 132-134 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{16} 140-141.5$; lit., ${ }^{17} 140-143{ }^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}+22$ $\left(0.3 \%\right.$ in $\left.\mathrm{CHCl}_{3}\right)\left\{\right.$ lit., ${ }^{16}[\alpha]_{\mathrm{D}}^{25}+44.4\left(1 \%\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; lit., ${ }^{17}$ $[\alpha]_{\mathrm{D}}^{25}+46.7\left(0.48 \%\right.$ in $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$. The $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and FAB mass spectra matched those of the racemic material.
(b) The penicillin sulfoxide $13 \mathrm{c}(0.182 \mathrm{~g}, 0.23 \mathrm{mmol})$ was subjected to the aforecited hydrolytic and acetalisation conditions. Work-up and purification as before gave ($1 S, 5 S, 6 S, 7 R$)-6,7-isopropylidenedioxy-3-oxabicyclo[3.2.1] octan-2-one ent-24 $(0.013 \mathrm{~g}, 29 \%)$ as needles, m.p. $130-131^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-21(0.6 \%$ in CHCl_{3}). The $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and FAB mass spectra matched those of the racemic material.

Acknowledgements

We thank the SERC for a CASE studentship (to A. P. D.). We are also grateful to Dr. M. Bamford for helpful discussions, Dr. A. F. Drake (SERC Chiroptical Spectroscopy Facility, Birk beck College) for the determination of CD spectra, Mr. K. Walkling
for the IR and UV spectral measurements, Messrs. C. Evans and F. Skinkis for recording the $300 \mathrm{MHz}^{1} \mathrm{H}$ and $100 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectra, Mr. R. Perkins for the determination of the FAB mass spectra, Dr. R. Perry for the elemental analyses, and Drs. P. Knox and J. Matthews for cytotoxicity tests.

References

1 Part 1, D. C. Humber, K. R. Mulholland and R. J. Stoodley, J. Chem. Soc., Perkin Trans. 1, 1990, 283.
2 M. Fuertes, T. Garcia-López, E. Garcia-Muñoz and M. Stud, J. Org. Chem., 1976, 41, 4074; P. C. Srivastava, M. V. Pickering, L. B. Allen, D. G. Streeter, M. T. Campbell, J. T. Witkowski, R. W. Sidwell and R. K. Robins, J. Med. Chem., 1977, 20, 256.

3 J. G. Buchanan and R. H. Wightman, in Topics in Antibiotic Chemistry, ed. P. G. Sammes, Ellis Harwood, Chichester, 1982, vol. 6, p. 229; J. G. Buchanan, Prog. Chem. Org. Nat. Prod., 1984, 44, 243. 4 G. Just and S. Kim, Tetrahedron Lett., 1976, 1063.
5 A. K. Saksena, A. T. McPhail and K. D. Onan, Tetrahedron Lett., 1981, 22, 2067; A. K. Saksena and A. K. Ganguly, Tetrahedron Lett., 1981, 22, 5227.
6 N. Katagiri, M. Tomura, T. Haneda and C. Kaneko, J. Chem. Soc., Chem. Commun., 1987, 1422.
7 G. Just, G. Reader and B. Chalard-Faure, Can. J. Chem., 1976, 54, 849.

8 G. Just and G. Reader, Tetrahedron Lett., 1973, 1525; G. Just and B. Chalard-Faure, Can. J. Chem., 1976, 54, 861; G. Just and R. Oulett, Can. J. Chem., 1976, 54, 2925; G. Just and S. Kim, Can. J. Chem., 1976, 54, 2925; A. bin Sodikun, D. I. Davies and R. F. Kenyon, J. Chem. Soc., Perkin Trans. 1, 1981, 2299; R. C. Cookson, P. J. Dudfield and D. I. Scopes, J. Chem. Soc., Perkin Trans. 1, 1986, 393; N. Katagiri, M. Nomura and C. Kaneko, Heterocycles, 1990, 30, 211.

9 T. Takahashi, H. Kotsubo and T. Koizumi, Tetrahedron: Asymmetry, 1991, 2, 1035.
10 P. J. O'Dwyer, D. D. Shoemaker, H. N. Jayaram, D. G. Johns, D. A. Cooney, S. Marsoni, L. Malspeis, J. Plowman, J. P. Davignon and R. D. Davis, in Investigational New Drugs, Martinus Nijhoff, The Netherlands, 1984, vol. 2, p. 79.
11 Y. F. Shealy and J. D. Clayton, J. Am. Chem. Soc., 1969, 91, 3075.
12 M. Node, K. Nishide, M. Sai, K. Fuji and E. Fujita, J. Org. Chem., 1981, 46, 1991.
13 J. E. McMurry, Org. React., 1976, 24, 187.
14 A. Wahhab, D. F. Tavares and A. Rauk, Can. J. Chem., 1990, 68, 1559; A. Wissner and C. V. Grudzinskas, J. Org. Chem., 1978, 43, 3972.

15 D. H. R. Barton, D. G. T. Greig, G. Lucente, P. G. Sammes, M. V. Taylor, C. M. Cooper, G. Hewitt and W. G. E. Underwood, Chem. Commun., 1970, 1683; D. H. R. Barton, F. Comer, D. G. T. Greig, P. G. Sammes, C. M. Cooper, G. Hewitt and W. G. E. Underwood, J. Chem. Soc. C, 1971, 3540.

16 M. Arita, K. Adachi, Y. Ito, H. Sawai and M. Ohno, J. Am. Chem. Soc., 1983, 105, 4049.
17 Y. Arai, Y. Hayashi, M. Yamamoto, H. Takayema and T. Koizumi, J. Chem. Soc., Perkin Trans. 1, 1988, 3133.

Paper 2/04435H
Received 17th August 1992
Accepted 9th September 1992

[^0]: * The m.p.s of the samples (m.p. $132-134^{\circ} \mathrm{C}$ for 24 and m.p. $130-131^{\circ} \mathrm{C}$ for ent-24) were also lower than the literature values for compound 24 (m.p. 140-141.5 ${ }^{16}$ and $140-143^{\circ} \mathrm{C}$; ${ }^{17}$ there was insufficient material in the samples to allow us to effect its recrystallisation).

